Stochastic System Analysis and Bayesian Model Updating

STOCHASTIC SIMULATION FOR BLOCKED DATA

¥ Monte Carlo simulation
# Rejection sampling
4 Importance sampling

# Markov chain Monte Carlo

+ Monte Carlo simulation

Introduction:

If we know how to directly sample from f(x) to obtain iid. samples

A

{X(i) i=1,..., N} , according to the Law of Large Number:

1S (o)) ancs
By (g(X)= 5 2e(4")=2

Procedure: skipped since it is trivial

Analysis:

1. The MCS estimator " is unbiased and the variance decays with the 1/N rate.

N

By [éMCS] - %E/'(X) [;g(X(i) )} =E [g(X)}

. 1 & i 1
Var,, |:gMCSi| _ FZ; Var,,, [g (X( ) )} = v Var,,, [g (X):I

2. Confidence interval

MCS estimator " =

izi:g(X(i))

=

Central Limit Theorem

Normal E,, (g(X)),

N—oo

7\

Vary ., (g(X))j

N

To build up confidence interval, we need Varf(x)(g(X )), which can be

estimated simply as the sample variance of { g ()A( (i)) i=1,...,N } , 1.e.

Far, (2(2)) =5 2 ¢ £9)-2]
1 \8 “N& g g

Therefore, the following 95.4% confidence interval for Gaussian can be built:
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5MCS _ o Varf(x) (g(X

)) SE/"(:() [g(X)]SgMCS_'_z M

N

Remarks:

1. “If we know how to directly sample from f(x)” is a very strict premise since it
usually requires the knowledge of F~'(-) (the inverse of the cumulative density
function), which is available to us only for certain standard probability density
functions, e.g. uniform, Gaussian, Gamma, etc. In the case that we know F ' (),
we can sample from f(x) using the following steps: Draw U ~ unif [0,1] and

let X =F"(U).Itcan be shown that X ~ f(x).

Proof: P(X <x)=P(F"'(U)<x)=P(U<F(x))=F(x)

CS

2. The accuracy of g% is robust against the dimension of X since Var(gMCS)

does not depend on the dimension.

4. Monte Carlo sumulation
Consider the same problem in Prob 3:
mE (1) +ct(f) + k() = F(t)
where f{t} 15 a time series contaimng 1000 11.d. Gaussian white noise of unit varance. The mass m,
damping ¢ and stiffness k are uncertain with prior PDF equal to ':\?l:l:ﬂ.ﬂ)':). N(D.I.D.[B:] and N('.l.C'.'.l])_.

respectively. We are interested in knowing the statistical properties of the maximum acceleration of the

system max|.if(r)| under those uncertainties. You can obtain samples of max|j."{r]| following the
L r

following procedure: (1) obtain samples of fit), m, ¢ and k vsing Monte Carlo simulation. (2) With these

samples and SDOF.m. you get 2 sample of the ¥(t) time lustory, from which we can, 1 turn, obfam a

sample of m;{x|1‘(r)|.
(1) Obtain 1000 samples of max|i()| and estimate | mx|;u‘-[r}|].

(2) Find the confidence interval of EI:IIL'IX |J'.’[!}|] )
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[ Matlab Code ]

% hwd_4 Monte Carlo simulation
% mass, m~ N{1.0.05"2), damping, ¢ ~ N{0.1,0.03"2), stiffness, k ~ N(1,0.1"2),
% external force, f{t) ~ MN(0.1%2)

clear;cle;
NS=1000; % 1000 samples
NF=1000; % data number of ones sample of fit)
m=1+randn(NS, 1)*0.05;c=0.1+randn(N5,1)¥0.03 l=1+randn{NS,1)*0.1;
for 1i=1:45,
f{:.i)=randn(NFE,1);
tempa=5D0OFmck(m(1),o(1). k1) f:.4);
a(-. i)=tempa’;
end
maxa=max(abs{a)):
Emaxa=mean(maxa);
% using Matlab fun.
varl=var(maxa);

Upboundl=Emaxa+2*sqrt{varl/NS);Lowerbound 1 =Emaxa-2 *sqrt{var 'INS);

[Result]
Emaxa =

3.47400129798383

varl = varl =
0.10021821284413 0.10010899463129

Upboundl = Upbound2 =
3.49490280155119 3.49480234818542

Lowerboundl = Lowerbound2 =
3.45309079441647 3.45311024778225

# Rejection sampling

Introduction:
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Suppose we don’t know how to sample f(x) directly, but we do know how to
evaluate f(x) up to a constant. — f(x)=a-h(x)
where a: unknown constant, %(x): we know how to calculate it. Note that this is the

usual situation for Bayesian analysis, where the posterior PDF has the following form:

o S(T1R) ()
T )

Assume that we know how to sample and evaluate a chosen PDF ¢(x)
._)\.\_\. K~q(x)
N

_/'/V/Q(

Procedure:
1. Let K beanumber suchthat K -g(x)>h(x), V.

2. Let X ~g(x), C:candidate.

. h(X€)
3. Accept X=X wp. ——".
Kq(X°)

4. Cycle 2 — 3 until we get enough accepted samples.

Analysis:
Same as the Monte Carlo simulation except that the number of samples should be the

number of the accepted samples.

Remarks:
(1) Different from MCMC, when a sample is rejected, we do not repeat the previous
sample.

(2) The number K can be solved as the following: Let

x =arg maxM = K= h(x*), i.e. solving K usually requires optimization.
o glx) qlx’)
~ o e oo M)
(3) How do we do Step 3? Let U ~ zmif[O,l] =Let X=X,if US———
Kq(X)

(4) If the shapes of ¢(x) and A(x) are very different, the efficiency of rejection
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sampling will be poor. However, it is often the case that the shape of A(x) is
unknown to us. It's hard to choose an efficient ¢(x).

(5) When the X dimension is high, rejection sampling can be extremely inefficient.
This is because it can be much harder to find a good ¢(x) in high dimensional
space.

Adaptive rejection sampling

Suppose logk(x) is concave.

1 o g A
h(x)
K,q, \
Ka(x)
AN
Procedure:

(1) Let ql(x) be an exponential PDF and is used as the initial rejection sampling

PDF. Note that K,g,(x) istangentto A(x).

(2) Draw X€~ q,(x). If X° accepted, keep on using ¢, (x) to generate the next
sample. However, if X rejected, let ¢, (x) be the second exponential PDF so
that K,g,(x) is tangent to h(x) at X€ in the log space. Generate the next

sample using the envelope PDF formed by K,g,(x) and K,g,(x). Continue

doing so until we get enough number of accepted samples.

Remarks:

1. Not applicable to non-log-concave PDF.

2. Still not good for high dimensional X .

3. There are variants of adaptive rejection sampling techniques that do not require

evaluating the gradients [1] and do not require log-concaveness [2].
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% Importance sampling

Introduction:
Suppose we don’t know how to directly sample from f(x), but we know how to
evaluate it. We would like to compute the expected value of some function g(X)

with respect to  f(x), i.e. to compute

E o lg(x)]= [ glx)f (x)ax

Let g(x), called the importance sampling PDF, be a PDF that we know how to

sample and evaluate and whose support region contains the support region of f(x),
then

Ef(x) [g(X)} :Ig(x)f(x)dx :Jg(x) f(x) q(x)dx:Eq(x) {g(x) f(x)}

Procedure:
(1) Draw {)A(("),i:l,m,N} iid. from ¢q(x).

(2) According to the Law of Large Number, we have

E, [ ¢(X)]=E,, {g(X)%} z%iﬁ;g()ﬁ”)

f()z'(i))
q()%(i))

A~ IS

Analysis:
1. The IS estimator ¢* isunbiased and the variance of ¢“ decays with the 1/N
rate.
_ e
Lo o /XY
E [85]=—E x¥
o8] N el ;g( )q(X(n)
- Jass
N q(X)
X
_Eq(x) (X)M
q(X)
f(x)
=|g(x q(x)dx=E, | g(X
Je() L a(yde= ()]
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N (@)
Var, [§13]=%2Varq(x) {g(X(’))f(X )]_LVar {g(X)M}

=1 N q(X)

2. Confidence interval

N o f x
IS estimator & EiZg(X(’)) ( 4 )
N5 g(x0)
f(X)
imi f(x) Vqu(x)[g(X)q(X)
Central Limit Theorem Normal Eq(x) g (X) ,
N> q(X) N

Central Limit Theorem NOI‘mal Ef(x) (g (X)) ,

N—oo

estimated simply as the sample variance of g()z' (i))

y o)
Varq<x>(g(X)&jEiZ g(f(‘”)f(X )

Q(X) N3 q()z'(l))

Therefore, the following 95.4% confidence interval for Gaussian can be built:

T REVC] 700)
<FE

q(X) q(x)
N I AC))

A~ IS

I}arq(x) [g (X)

N

g\_ls_z

Remarks:

. . .1
1. Recall that the variance of the MCS estimator is NVarf(x) ( g(X )) Here we have

S (X)

seen that the variance of the IS estimator is %Varq(x) { g(X )—} It can be

q(X)

shown that if the importance sampling PDF ¢(x) e g(x) f(x), the variance of
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the IS estimator is 0. We call this the optimal importance sampling PDF. However,
this PDF usually cannot be directly sampled and evaluated. It is also likely to
choose an importance sampling PDF so that the variance of the resulting IS

estimator is larger than that of MCS estimator.

2. Importance weights {w(i) :i=1,...,N}

Let us define w"

as the importance weight of the i” sample.
N . ~ .
One can see that the IS estimator is simply Zw(’) g (X ® ) . Note that

i 1 f(X 1
Ey [W( )] :ﬁEqm { q((X))} Y

Also,

Central Limit Theorem

- () _ |
Swn-L3

i=1 NS q(X(i)) Noseo

= Z ) o= g
i=1

3. Importance sampling is inefficient when X dimension is high. This is because
when the dimension is high, the importance weights may become highly

non-uniform. The consequence is that the number of effective samples is little.
Modified importance sampling

Introduction:

For Bayesian analysis, we usually only know how to evaluate the posterior PDF

f(x | }7) up to a constant:

A(f

Note that we usually don’t know the normalizing constant f (}A’ ) So the importance
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sampling technique cannot be directly applied since it requires full evaluation of

f (x| Y ) Modified importance sampling only requires the evaluation of f (x | Y ) up

to a constant.—)f(x|?)=a~h(x), where a: we don’t know it, A(x): we know

how to evaluate it. Now let the normalized importance weight be
h(j((i)) v h(i’(‘f))

q()}'(i)) = q()}'('i))

W) =

N
Note that Zw(i)zl. The MIS estimator for Ef(x‘f) [g(X)JEE[g(XHY] is

. i=1
simply z ny g ()A( ® ) .
i=1

Observation: when N — oo, MIS is the same as IS.
Proof:

A (-

| & h()'(\'(j)) h(X) 1 N h(X(/)
h o — E — ==
When N — oo, N;q()?(f))_) | () 580 >

S—

%E
jzlq(f(o)) .

Therefore, the normalized importance weight in MIS and the importance weight in IS

become identical. The consequence is that MIS is only asymptotically unbiased.

Procedure:

=

(£9) /u
i)/ %

1. Draw {)A((") :izl,...,N} ~¢(x) and compute wt) = 2 q()A((")) .

_Q

N

2. E[g(X)|)A’]zZW(i)g()2'(i))

i=l1

Remarks:
1. When N is large, the statistical properties of the MIS estimator is similar to
those for the IS estimator. In fact, MIS is asymptotically unbiased.

2. MIS can be used to estimate the normalizing constant f (? ) in Bayesian analysis.

Let o = hE)A(’; be the non-normalized importance weight. It can be shown that
g4,
1 & .
N ") is an unbiased estimator of f (Y )
i=1
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Sample-importance resampling

Introduction:

Both importance sampling and modified importance sampling are mainly for

estimating £ [ g2(X)| Y ] . If we would like to obtain samples from f (x | Y ) , We can

adopt SIR, which is just one step ahead of MIS. The idea is to resample the MIS

samples according to their normalized weights.

N
Procedure: Recall IIS, we have {w(i) =1, N}, ZW(i) =1

i=l1

1. Do MIS to obtain {()E'(i),w(")) Q= 1,...,N} . Recall that ﬁ:w(i) =1.

i=l1

2. Resampling: Let XY = x© wp. w" for j=1,---,M, then

new

(X0 =1 M)~ £ (x17)

Remarks:

1. There may be repeated samples in {X(j) cj=1-- ,M} .

new *

2. M is better to be no larger than N.

3. If N issmall, {X(j) :j=1,---,M}><f(x|f).This is because MIS is only

new

asymptotically unbiased.

10
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1. Improved importance sampling (IIS)

Consider the following SDOF system:

md () + ctl(f) = kx(f) = (1)

where x(t) 1s the displacement; f{f) 1s the input force; m =1 is the mass; ¢ = 0.1 is the damping; k 15 the

uncertain stiffness, for which we assign a prior PDF N(l,(}.l:j; we cbserve the acceleration of the system

() plus some noise, 1.e.

YO =% +e(t)  elt)~iid. N(0.1)

Please use the same data as HW4.3, e download HW4_3 mat from the website, that contains the data D,

ncluding ft) and Y(t). Alse download SDOF2.m.

(1} Estimate E[k/D] and Var[k/D] using IIS, where the importance sampling PDF is chosen to e
N[D.S,{?.l:j and N(0.8, 12}. Alse cbtain the 95 4% confidence for E[k/D]. Which importance PDF s
better? Why?

(2} Obtain samples from fik|D¥) using SIR (Sample-importance resampling), where the importance
sampling PDF is chosen to be N{0.8.0. 12} and N{0.8, lzj. Which importance PDF s better? Why?

(3) Note that now SDOF2.m also owtputs the maximum abselute displacement vmax of the SDOF due to
the excitaticn fit). Estumate E[umax|D] using IS, where the impeortance sampling PDF is chosen to
be N(0.8,0.1 ]:1: and also obtain the 95.4% confidence for E[umax|D].

<«—— flk| D)

24 .
= <——hlk)~ Nl0.8,0.1°)
T k)~ Nlo.81?)
s ’ o i 2 3 4
K
%OHUE %

0002

o 200 400 600 BOO 1000 1200 1400 1600 1000 2000
sample, |

11
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]

160
160

140
g

20k

0.79 0.805
3

o R0 w0 0 B0 0w 1w 10 Ten few 200 0-,| m ‘ = :
[Results ]
Importance sampling PDF | E(k| D) Var(k | D) 93 4% confidence for E(k | D)

W)~ N08.0.17) | 079846054 | 2.26130306e-005 | 0.67330357< E(k| D)< 0.92361753
hik)~ Nl0.8.12) 0.79946090 | 2.22609083e-005 | 0.34315262< E(k| D)< 125576918
[Result]
Importance sampling PDF E{I!m D) Vc:'.?‘lzumg|D] 95 4% confidence for Elfﬂm D)
M)~ N0.8.01%) | 737012062 | 3332750 | 607.118392< E(uyy, | D) < 866.905731

% Markov Chain Monte Carlo
1. Metropolis-Hasting algorithm
2. Gibbs sampler

3. Hybrid Monte Carlo

Metropolis-Hasting algorithm

Introduction:

Suppose the target PDF is the posterior PDF in a Bayesian analysis:

7(71x) 1 (x)

The idea of MH is to create a Markov chain whose stationary distribution is the same

f(x|Y)=W=a h(x)
as the target PDF.
Procedure:

1. Let H (xc | x(o)) be the chosen proposal PDF.

2. Initialize X© = any place.

12
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h(XC)H (X X°)

3. Let the candidate X€ ~ H(x“ |)?(°)) and compute 7 = h(X(O))H(XC |)?(°’) .

4 Let ¥ X¢ wp min(l,r)
' X© w.p 1-min(L,r)

5. Cycle 3 — 4 to obtain Markov chain samples {)A( ©:t=0,..,T } . These samples
will be asymptotically distributed as [ (x | Y ) if the Markov chain is ergodic.
First note that the MH algorithm creates a Markov chain that satisfies detailed

balance: F(z|x)h(x)=B(x|z)h(z)  Vx,z, F(z|x) and B(x|z) are the

forward and backward probability transition kernels of the Markov chain. The
forward and backward kernels in the MH algorithm are

F(z|x)=[1-min(1,r)]|8(z—x)+min(L ) H (z| x)

B(x|z)=[1-min(Lr,)]|6(x—z)+min(Lr) H (x|z)

where ;= ) = _

LHS =F (z|x)h(x)

[ h(2)H (x| 2) (. h(z)H(x]|z)

__1—m1n 1’h(x)H(z|x) —5(Z—x)h(x)+m1n(l,h(x)H(Z|x)JH(Z|x)h(x)
—_ —min h(x)H(z|x) | x—z)h(z)+min zlx)h(x z x|z
|1 L P e i G . 1)
—_ —min h(x)H(z|x) | x—2z)h(z)+min h(x)H(Z|x) z x|z
B R e e (h(zm(m)’l]”( )

Therefore, as long as the Markov chain is ergodic, the stationary distribution will be

unique and equal to the target f (x | Y ) .

Analysis:

13
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. 1 & -
1. The MCMC estimator for E[g(X) | Y] is simply g"M = ?Zg(X(” ) . The
t=1
MCMC estimator is asymptotically unbiased because
A 1 <& 5 . .
E[8yenc] = E{;Zg(X“)) | Y} - E|g(X)|7]
t=1

Note that if we ignore the MC samples in the burn-in period, the estimator is
unbiased.

o BN o (¢ 5 1 L A A
Var[gMCMC]:Var|:FZg(X()NY:|:FVar|:Zg(X())|Y:|

t=1 t=1

LS varle(0)17)s S Seon{s ). s8]
t=1 s=1 t=1
Note that after the MC reaches its stationary state, the time origin is forgotten, so

cov(g(AA’(’)),g(AA’(”"))|)}):R(k)

Note that R(k)=R(~k) and R(0)=Var(g(X)|Y)

“[w—s)'fe(s)

quantifies the degree of dependence of the MC
T-R(0)

R(O
samples. Note that (T ) is the variance of the estimator if the MC samples are

all independent. However, the MC samples are dependent so the actual variance is

larger than for a factor of [1 + }/]. One can say that the equivalent number

of independent samples is IL . Note that R(k) can be estimated from the MC
T

samples as the following:

R(k)= cov(g(X(”),g(X(”k)))
| Ik

S ) o5 ] ) =00

2. Confidence interval
Note that the Central Limit Theorem and the Law of Large Number still hold for

14
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weakly dependent samples, i.e.

Var(g(X)H;)

gMCMC:%ig(X(,))?N E[g(X)|?], [1+7]
=1

So the following 95.4% confidence interval can be built:
) [RO), . S [RO)[, .
gheme o —(T )[1+;/] SE[g(X)w] Y ) —(T )[1+y]

Remarks:

1. Recall that f (x Y ) =a-h(x). We don’t need to know how to evaluate the

normalizing constant a since it is cancelled out as we compute 7.
2. When the initial state of the Markov chain is chosen arbitrarily, the chain may

need some time to reach its stationary state. We call this period the burn-in period.

The MC samples in the burn-in period are not distributed as (x |Y ) . We can

choose to discard these samples. The usual way of identifying the burn-in period
is to plot the sample value time history (or the time history of certain chosen

statistics) and identify it visually.

Samples in the burn-in period

can be discarded

Burn-in period
3. How do we know the resulting MC is ergodic? In many cases, we don’t know it
for sure. But if we conduct several MCMCs to obtain independent MCs and found
their behavior is similar, we can argue that the MC may be ergodic. There are

cases where we can immediately see the MC is ergodic or not:

v

4. After reaching the stationary state, the MC samples become identically distributed
but dependent. The dependency between two samples decays with the time

15
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difference.

5. When H(z|x)=H(x|z), the resulting algorithm is called the Metropolis

A

h XC)
(X

algorithm. Note » =

~—

always accept accept with prob r

»
»

6. The choice of the proposal PDF H (z|x) can significantly affect the efficiency
of MCMC. From our experience, the type of H (z|x) is not critical but the
width of H (z|x) matters. If H(z|x) isvery narrow, r=1 and no rejection,

but adjacent samples are highly correlated. If H (z|x) is very wide, r is often

small and lots of rejection and repeating samples, so the samples can be highly

correlated. Therefore, H (z|x) should not be too narrow or too wide. The rule of
thumb is to take the width of H (z|x) to be the same order of the width of

f (x | Y ) . Usually, the performance is the best when the rejection rate is around

50%.
7. In principle, the MH algorithm should work even when the X dimension is high.
In practice, an efficient proposal PDF can be difficult to build because we usually

lack of knowledge of the geometry of the target PDF 1 (x | Y ) . There are also

issues for the local-random-walk MH, e.g. MH with a Gaussian proposal PDF.
Consider the following Gaussian PDF. Let Gpax and Guin> be the maximum and

minimum eigenvalues of the covariance matrix. Suppose we choose a Gaussian

proposal PDF H (z|x) whose standard deviation in all directions is identical

and equal to Gmin. One can see that in order to have the MC samples travel
throughout the significant region of the target PDF, we need at least Giax/Gmin MC

16
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time steps.
This difficulty is due to high asperity ratio may occur regardless the dimension of
X. However, from my experience, it occurs more frequently when X dimension

is high. This is definitely not an issue when X is a scalar.

-

8. MH may not work for multi-modal PDFs since the resulting MC may be
non-ergodic.
2. Markov chain Monte Carlo (MCMC)

Consider the following medel:

kD) =a*Xk) ~wlk) wik)~1id N{0. 1% X(0) ~ N{U.lz}

All wik) and X(0) are independent. The parameter “2” 15 unknown and 15 given a prior PDF I\'(I:I.j__ﬂ.ﬁlj.

Download the data D={X(k): k=1.....200} from the website (HW3_2 mar).

(1) Obtain samples from £a|D) with MCMC using the following proposal PDFs: Gavssian PDF centered
at previous sample with standard deviation = 0.001, 0.01, 0.1, 1. Which ones give you the lowest and
highest rejection rate? Which cnes grve yvou the longest and shortest bum-in period? Why? Which
one do you think is the best to choose?

2} Estimate E[aD] ustng the MCMC samples for the four different proposal PDFs. Plot the lag-k
covariance and calculate the 95 4% confidence intervals for all cases. Which proposal PDF do vou
think 1z the best to choose?

[ REesults ]
Standard Deviation ( & | 0.001 0.01 0.1 1

Fejection Rate (% ) 353 5.83 4045 90.5

17
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[ Plot the lag-k covariance ]

¥a 1w s 10
k=440 k=133
A Ti I
—3 noise | =—> noise
1 " I
g oF ] = :
: | :
] B 1
1 I
i i
' : i+
i _ i
(a) o=0001( F=0~2500) (b) o=001 { k=0~1700
" [
F=13 k=13
L] 1
.—> noise : —> noise
0 O - !
1 : I I- ‘ 1 :
Tttt nit b A LU, / :
h':gi-f .1.-'4_“':"'*?’]_ 'I'TI'T'T|'-|'||I*."_i‘_1.|r'-hjl"-'-‘:'r‘.‘lfit‘:.wsl ' .Illi: T » <I | E
: : : L B 1y I|! :
Ay I !
! | !
=0 400 L] a0 I.::,l. I‘;_'\. 1480 [l L0 00 Ik_ .:." g 4 [ B f' v 4 =3 - o]
(el) o=01({k=0~1980" (e2) =01 (k=0~20)
b W II( ':-I Lo
| k=03
1 5 4

F“# noise ; E =65

: : 1. i i F i 1 L <I 1

I T My ¥ A T * : .

L__:r_} g —= noise

= |4 o 1
= I 1 td :
i | i
! 1k i
5 a
! L]
: :
i |
" ) O a0 MO Tood im0 #0100 W03 2000 I"_ i 53 = ¥ @ = ] - = = [To]
(dl) o=1(k=0~1980) (d2) o=1(k=0~100

[Results ]

Standard Deviation E(a|D) 95.4% confidence for Ela|D) Gamma, 7
o =0.001 046448930 -:}.45499924=::£[a|D)<:u_4739?936 135.37133050
=001 048923176 0.46872213< Ela | D)¢20.50974139 82 83202645

a=01 049083634 U.48335158<3.E{a Di}c:iﬂ_49831110 486730536
ag=1 048869452 0.47363000= Ela | D){ZU.SDE?EQDE 22 11833874
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Gibbs sampler
Introduction:

Is it possible to conduct MCMC without rejecting samples? It turns out to be possible.

This can happen when the uncertain variable X can be divided into m groups

{X,.:izl,...,m} and, moreover, when it is feasible to directly sample from

_f(xi |{x\xl.},f) Vi, where {x\x,} denotes {x,,....x,_ |, X, X, } -

Procedure:

1. Initialize )A(O = f(f”,f(g‘”,---, X 0)] at any place.

v ) o ,
2. Sample X =1 210 _ p (x50, 0 F)

3. Repeat step 2 to get {)A( 0.4=0,-,T } . These samples will be asymptotically

distributed as 1 ( x| Y ) if the Markov chain is ergodic.
Note that the Gibbs sampler algorithm creates a Markov chain that satisfies detailed
balance: F(z|x)f(x|)A’):B(x|z)f(z|?) Vx,z, F(z|x) and B(x|z) are

the forward and backward probability transition kernels of the Markov chain. Using

the following transition as an example:

xl(t+1) xl(t+1)

x§t+1) x§t+l)

th) x§t+l)
> —> —

xit) xgt)

)

The forward and backward kernels in the Gibbs sampler algorithm are:
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F(Z|x):5(z1 - X, )5(22—x2)5(z4—x4)~--5(zm—xm)-f(zs |xl,x2,x4,---,xm,f)

B(x|z):5(x1 -z )5(x2—22)5()64—24)---5(xm—zm)'f(x3 |Zl,22,z4,~--,zm,f’)

Remarks:
1. Unlike MH, Gibbs sampler needs no proposal PDF, so no rejection. But the
tradeoff is that we need to know how to sample from f (xi | x\Xx, ).

2. In the case that we don’t know how to directly sample from f (xi | x\x, ), we can
sample it using sample-importance resampling, MCMC, rejection sampling, etc. A
popular choice is to use adaptive rejection sampling to sample from f(x, | x\x,)
[3].

3. The advantages and disadvantages of Gibbs sampler are similar to those for MH.
The analysis is also the same.

4. Gibbs sampler will not work well when some uncertain parameters are highly
correlated conditioning on the data. The consequence is that the MC samples
move very slowly when sample these highly correlated variables. There are
variants of Gibbs sampler that enjoy larger jumps in the MC samples even when

such high correlation exists, e.g. Gibbs sampler with overrelaxation [4,5].

Hybrid Monte Carlo
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Introduction:
Both MH and Gibbs sampler create MCs with local random walk behavior. However,

this behavior is not desirable. With this behavior, it may take a long time to have the

resulting MC travel throughout the significant region of f (x | Y ) , especially when

X dimension is high. Hybrid Monte Carlo is a MCMC algorithm that does not use
local random walk.
The basic idea is to add an auxiliary uncertain variable Z to the process, where the

new target PDF is proportional to
L2
Iy
f(x,z) o< h(x)-e *=

where f (x|); ):a-h(x) and » is the dimension of X . If we are able to sample
from f(x,z), it is clear that the X part of the samples will be distributed as

f(x | }}). How do we sample from f(x,z)? We employ MCMC.
The main trick for Hybrid Monte Carlo is to give A(x) and z some physical

meaning: —log[A(x)] is considered to be the potential energy of a ball with unit

mass (x is the location of the ball; think of —log[A(x)] to be the profile of a valley)
and z is the velocity of the ball. So the total energy of the ball is

—logh(x)+%z:zi2 =—log f(x,z)= H(x,z)
i=1

If there is no friction when the ball rolls on the valley, the total energy H (x,z) is

conservative, i.e. f(x,z) is conservative, and the ball rolls according to the

following equations:

dx, dz, aH(x,Z) E)IOgh(x) 1

it B — L = = 1=1,....,n
' dt ox, ox,

Procedure:

1. Initialize )A((O), AR

2. Solve x(¢), z(¢) according to the following governing equation

dx, dz,  0H(x,z) dlogh(x)
—L =7z — = =
' dt ox, ox,

1 1

i=1..n
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with initial condition x(0)=X® and z(0)=Z® . Evolve the solution for

randomized duration of R®.Let X© = x(ﬁ(o)) )

A S
Resample Z" ~e 24

Cycle 2-3 to get {)? ©:t=0,..,T } . These samples will be asymptotically

distributed as  f (x | Y ) if the Markov chain is ergodic.

Analysis: same as MH

Remarks:

1.

The HMC algorithm indeed samples from f(x,z). To see this, let’s view the end

product of Step 2 in the algorithm as a candidate, i.e. X€ = x(fi(o)),ZAC = z(]%(o))

is the candidate of the MCMC algorithm. One can verify that

f()%C,ZAC)

f()‘((O)’ZAw))

This is because the total energy H (x,z), and hence f'(x,z), remains constant in
the solution process of the Hamiltonian equations. Therefore, the candidate
X€,Z¢ is always accepted as the next MC sample.

The duration R in Step2 is better to be randomized to avoid a periodic MC,
although the chance of being so is very small.

Step 3 is necessary since without it, f(x,z) will be always constant, hence the
MC will not explore the entire phase space.

In practice, Step 2 cannot be solved analytically and must be solved
approximately. Doing so, the resulting » ratio will be only approximately equal to
1. To handle this issue, we can simply add an accept/reject step, i.e. change Step 2
to the following:

Solve x(t), z(¢) approximately according to the following governing equation
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dx. dz, 0H (x,z) Odlogh(x)

l I —

— =z

dt ' dt ox, ox,

1 1

i=1,..,n

with initial condition x(0)=X and z(0)=Z® . Evolve the solution for

randomized duration of R®. Let X€ :x(f{(o)) and Z€ = z(l%(o)). Accept the

candidate, i.e. take X = X, with probability , where
r(x.z¢)
- f(f(“” 2((»)

If not accepted, repeat the previous sample, i.e. take X0 =x©,
The approximate solution algorithm to the Hamiltonian equations can not be

arbitrary. In fact, the chosen algorithm must be reversible in time, i.e. if starting
from initial condition, we obtain the candidate solution; a reversible algorithm
must have the property that starting from that candidate and solve the equation
backward in time, we will obtain the same initial condition. This is so because the
resulting HMC algorithm must satisfy the so called detailed balance (or
reversibility) condition. The following “leapfrog” (finite difference) algorithm is

. . d . . .
reversible and is accurate to the 2" order in the Taylor series expansion:

At A Oh(x)fox|
30

xi(t+At)=xi(t)+At-zi(t+%j

A A ah(x)/axi
z,(t+Ar) =Z,(f+7j+7 h(x(t+Ar))

x=x(1+Ar)

One can see that HMC does not do local random walk and it’s possible for HMC
to make large jumps. Of course the tradeoff is that HMC requires solving the
Hamiltonian equations, which may requires much computation. According to the
experience from other researchers, it seems that the cost is usually worthwhile,

compared to MH and Gibbs sampler.
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1

0

Figure 11. {a,b) Hybrid Monte Carlo used to generate samples from a bivariate Gaus-
stan with correlation p = 0.9958. (c.d) Random—walk Metropolis method for comparison.
(a) Starting [rom the state indicated by the arrow, the continuous line represents two
successive trajectories generated by the Hamiltonian dynamics. The squares show the
endpoints of these two trajectories. Fach trajectory consists of Tau = 19 ‘leapfrog” steps
with epzilon = 0.055. After each trajectory, the momentum is randomized. Here, hoth
trajectories are accepted; the errors in the Hamiltonian were 4+0.016 and —0.06 respec-
tively. (b} The second figure shows how a sequence of four trajectories converges [rom
an initial condition, indicated by the arrow, that 1s not close to the typical set of the
target distribution. The trajectory parameters Tau and epsilon were randomized for
each trajectory using uniform distobutions with means 19 and 0.055 respectively. The
first trajectory takes us to a new state, {—1.5, —0.5), similar in energy to the first state.
The second trajectory happens to end in a state nearer the bottom of the energy land-
scape. Here, since the potential energy F is smaller, the kinetic energy & = p*/2 is
necessarily larger than it was at the start. When the momentum is randomized for the
third trajectory, its magnitude becomes much smaller. After the fourth trajectory has
been simulated, the state appears to have become typical of the target density. (¢} A
random—walk Metropolis method using a Gaussian proposal density with radius such
that the acceptance rate was 58% in this simulation. The number of proposals was 38 so
the total amount of computer time used was similar to that in (a}. The distance moved 1s
small because of random walk behaviour. {d) A random—walk Metropolis method given
a similar amount of computer time to (b,
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