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STOCHASTIC SIMULATION FOR BLOCKED DATA 

 

 Monte Carlo simulation 

 Rejection sampling 

 Importance sampling 

 Markov chain Monte Carlo 

 

 

 Monte Carlo simulation 

 

Introduction: 

If we know how to directly sample from ( )xf  to obtain i.i.d. samples 

( ){ }ˆ : 1,...,
i

X i N= , according to the Law of Large Number: 

( ) ( )( ) ( )( )
1

1 ˆ ˆ
N

i MCS

f x
i

E g X g X g
N =

≈ ≡∑  

 

Procedure: skipped since it is trivial 

 

Analysis: 

1. The MCS estimator ˆMCSg  is unbiased and the variance decays with the 1/N rate. 

( ) ( )
( )( ) ( ) ( )

1

1
ˆ

N
iMCS

f x f x f x
i

E g E g X E g X
N =

 
  = =     

 
∑

 ( ) ( )
( )( ) ( ) ( )2

1

1 1
ˆ

N
iMCS

f x f x f x
i

Var g Var g X Var g X
N N=

   = =      ∑  

2. Confidence interval 

MCS estimator 
( )( )

1

1
ˆ

N
iMCS

i

g g X
N =

≡ ∑  

( ) ( )( ) ( ) ( )( )
Central Limit Theorem Normal ,

f x

f x
N

Var g X
E g X

N→∞

 
 →
 
 

 

To build up confidence interval, we need ( ) ( )( )f x
Var g X , which can be 

estimated simply as the sample variance of 
( )( ){ }ˆ : 1,...,
i

g X i N= , i.e. 

( ) ( )( ) ( )( )
2

1

1ˆ ˆ ˆ
N

i MCS

f x
i

Var g X g X g
N =

 ≡ −
 ∑  

Therefore, the following 95.4% confidence interval for Gaussian can be built: 
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 ( ) ( )( )
( ) ( ) ( ) ( )( )ˆ ˆ

ˆ ˆ2 2
f x f xMCS MCS

f x

Var g X Var g X
g E g X g

N N
− ≤ ≤ +  

 

 

Remarks: 

1. “If we know how to directly sample from ( )xf ” is a very strict premise since it 

usually requires the knowledge of ( )⋅−1F  (the inverse of the cumulative density 

function), which is available to us only for certain standard probability density 

functions, e.g. uniform, Gaussian, Gamma, etc. In the case that we know ( )⋅−1F , 

we can sample from ( )xf  using the following steps: Draw [ ]1,0~ unifU  and 

let ( )1X F U−= . It can be shown that ( )~X f x . 

Proof: ( ) ( )( ) ( )( ) ( )1P X x P F U x P U F x F x−≤ = ≤ = ≤ =  

2. The accuracy of ˆMCSg  is robust against the dimension of X  since ( )MCSgVar ˆ  

does not depend on the dimension. 
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 Rejection sampling 

 

Introduction: 
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Suppose we don’t know how to sample ( )xf  directly, but we do know how to 

evaluate ( )xf  up to a constant. ( ) ( )xhaxf ⋅=→  

where a : unknown constant, ( )xh : we know how to calculate it. Note that this is the 

usual situation for Bayesian analysis, where the posterior PDF has the following form: 

( )
( ) ( )

( ) ( )
{

( ) ( )

( )

ˆ | 1ˆ ˆ| |
ˆ ˆ

h x

a

f Y x f x
f x Y f Y x f x

f Y f Y
 = =
 1442443

 

Assume that we know how to sample and evaluate a chosen PDF ( )xq  

 

 

Procedure: 

1. Let K  be a number such that ( ) ( )xhxqK ≥⋅ , x∀ . 

2. Let ( )ˆ ~CX q x , C : candidate. 

3. Accept ˆ ˆ CX X=  w.p. 
( )
( )

ˆ

ˆ

C

C

h X

Kq X
. 

4. Cycle 2→3 until we get enough accepted samples. 

 

Analysis: 

Same as the Monte Carlo simulation except that the number of samples should be the 

number of the accepted samples. 

 

Remarks: 

(1) Different from MCMC, when a sample is rejected, we do not repeat the previous 

sample. 

(2) The number K  can be solved as the following: Let 

( )
( )

( )
( )*

*
* maxarg

xq

xh
K

xq

xh
x

x

=⇒= , i.e. solving K  usually requires optimization. 

(3) How do we do Step 3? Let [ ]ˆ ~ 0,1U unif ⇒Let ˆ ˆ CX X= , if 
( )
( )

ˆ
ˆ

ˆ

C

C

h X
U

Kq X
≤  

(4) If the shapes of ( )xq  and ( )xh  are very different, the efficiency of rejection 

( )K q x⋅( )q x

( )h x
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sampling will be poor. However, it is often the case that the shape of ( )xh  is 

unknown to us. It's hard to choose an efficient ( )xq . 

(5) When the X  dimension is high, rejection sampling can be extremely inefficient. 

This is because it can be much harder to find a good ( )xq  in high dimensional 

space. 

 

Adaptive rejection sampling 

 

Suppose ( )xhlog  is concave. 

 

 

 

Procedure: 

(1) Let ( )xq1  be an exponential PDF and is used as the initial rejection sampling 

PDF. Note that ( )1 1K q x  is tangent to ( )h x . 

(2) Draw ( )1
ˆ ~CX q x . If ˆ CX  accepted, keep on using ( )xq1  to generate the next 

sample. However, if ˆ CX  rejected, let ( )xq2  be the second exponential PDF so 

that ( )2 2K q x  is tangent to ( )xh  at ˆ CX  in the log space. Generate the next 

sample using the envelope PDF formed by ( )1 1K q x  and ( )2 2K q x . Continue 

doing so until we get enough number of accepted samples. 

 

Remarks: 

1. Not applicable to non-log-concave PDF. 

2. Still not good for high dimensional X . 

3. There are variants of adaptive rejection sampling techniques that do not require 

evaluating the gradients [1] and do not require log-concaveness [2]. 

 

( )3 3Kq x

( )2 2K q x

( )1 1K q x⋅

l o g

( )h x
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 Importance sampling 

 

Introduction: 

Suppose we don’t know how to directly sample from ( )xf , but we know how to 

evaluate it. We would like to compute the expected value of some function ( )Xg  

with respect to ( )xf , i.e. to compute 

( ) ( )[ ] ( ) ( )∫= dxxfxgXgE xf  

Let ( )q x , called the importance sampling PDF, be a PDF that we know how to 

sample and evaluate and whose support region contains the support region of ( )xf , 

then 

( ) ( ) ( ) ( ) ( )
( )
( )

( ) ( ) ( )
( )
( )f x q x

f x f x
E g X g x f x dx g x q x dx E g x

q x q x

 
= = =    

 
∫ ∫  

 

Procedure: 

(1) Draw ( ){ }NiX i ,,1,ˆ L=  i.i.d. from ( )q x . 

(2) According to the Law of Large Number, we have 

( ) ( ) ( ) ( )
( )
( )

( )( )
( )( )
( )( )1

ˆ
1 ˆ ˆ

ˆ

i
N

i IS

f x q x i
i

f Xf X
E g X E g X g X g

q X N q X=

 
= ≈ ≡    

 
∑  

 

Analysis: 

1. The IS estimator ˆ ISg  is unbiased and the variance of ˆ ISg  decays with the 1/N 

rate. 

( ) ( )
( )( )

( )( )
( )( )

( ) ( )
( )
( )

( ) ( )
( )
( )

( )
( )
( )

( ) ( ) ( )

1

1
ˆ

1

i
N

iIS

q x q x i
i

q x

q x

f x

f X
E g E g X

N q X

f X
E N g X

N q X

f X
E g X

q X

f x
g x q x dx E g X

q x

=

 
   =   
 

  
= ×   

   

 
=  

 

= =   

∑

∫
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( ) ( )

( )( )
( )( )
( )( ) ( ) ( )

( )
( )2

1

1 1
ˆ

i
N

iIS

q x q x q xi
i

f X f X
Var g Var g X Var g X

N N q Xq X=

   
   = =        

∑  

2. Confidence interval 

IS estimator 
( )( )

( )( )
( )( )1

1
ˆ

i
N

iIS

i
i

f X
g g X

N q X=

≡ ∑  

( ) ( )
( )
( )

( ) ( )
( )
( )

( ) ( )( )
( ) ( )

( )
( )

Central Limit Theorem

Central Limit Theorem

Normal ,

Normal ,

q x

q x
N

q x

f x
N

f X
Var g X

q Xf X
E g X

q X N

f X
Var g X

q X
E g X

N

→∞

→∞

  
  

   →    
  

 
 

  
  
  →  
 
 
 

 

To build up confidence interval, we need ( ) ( )
( )
( )q x

f X
Var g X

q X

 
  
 

, which can be 

estimated simply as the sample variance of 
( )( )

( )( )
( )( )

ˆ
ˆ : 1,...,

ˆ

i

i

i

f X
g X i N

q X

 
 

= 
  

, i.e. 

( ) ( )
( )
( )

( )( )
( )( )
( )( )

2

1

ˆ
1ˆ ˆ ˆ

ˆ

i
N

i IS

q x i
i

f Xf X
Var g X g X g

q X N q X=

  
 ≡ −       

∑  

Therefore, the following 95.4% confidence interval for Gaussian can be built: 

  
( ) ( )

( )
( )

( ) ( )
( ) ( )

( )
( )

ˆ ˆ

ˆ ˆ2 2

q x q x

IS IS

f x

f X f X
Var g X Var g X

q X q X
g E g X g

N N

   
   
   − ≤ ≤ +    

 

Remarks: 

1. Recall that the variance of the MCS estimator is ( ) ( )( )
1

f x
Var g X

N
. Here we have 

seen that the variance of the IS estimator is ( ) ( )
( )
( )

1
q x

f X
Var g X

N q X

 
 
 

. It can be 

shown that if the importance sampling PDF ( ) ( ) ( )q x g x f x∝ , the variance of 



 

Stochastic System Analysis and Bayesian Model Updating 

 8 

the IS estimator is 0. We call this the optimal importance sampling PDF. However, 

this PDF usually cannot be directly sampled and evaluated. It is also likely to 

choose an importance sampling PDF so that the variance of the resulting IS 

estimator is larger than that of MCS estimator. 

2. Importance weights 
( ){ }: 1,...,
i

w i N=  

Let us define 
( )

( )( )
( )( )

ˆ
1

ˆ

i

i

i

f X
w

N q X
≡  as the importance weight of the thi  sample. 

One can see that the IS estimator is simply 
( ) ( )( )

1

ˆ
N

i i

i

w g X
=

∑ . Note that 

( ) ( )
( )( ) ( )

1 1i

q x q x

f X
E w E

N q X N

 
  = =  

 
 

Also, 

( )

( )( )
( )( )

( )

( )
( )

Central Limit Theorem

1 1

1
Normal 1,

i q xN N
i

i N
i i

f X
Var

f X q X
w

N Nq X →∞
= =

  
  
  = →  
 
 
 

∑ ∑  

( )

1

1
N

i N

i

w →∞

=

⇒ →∑  

 

3. Importance sampling is inefficient when X  dimension is high. This is because 

when the dimension is high, the importance weights may become highly 

non-uniform. The consequence is that the number of effective samples is little. 

 

Modified importance sampling 

 

Introduction: 

For Bayesian analysis, we usually only know how to evaluate the posterior PDF 

( )ˆ|f x Y  up to a constant: 

( )
( ) ( )

( )

ˆ |
ˆ|

ˆ

f Y x f x
f x Y

f Y
=  

Note that we usually don’t know the normalizing constant ( )Yf ˆ . So the importance 
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sampling technique cannot be directly applied since it requires full evaluation of 

( )ˆ|f x Y . Modified importance sampling only requires the evaluation of ( )ˆ|f x Y  up 

to a constant. ( ) ( )ˆ|f x Y a h x→ = ⋅ , where a : we don’t know it, ( )h x : we know 

how to evaluate it. Now let the normalized importance weight be 

( )

( )( )
( )( )

( )( )
( )( )1

ˆ ˆ

ˆ ˆ

i j
N

i

i j
j

h X h X
w

q X q X=

≡ ∑  

Note that 
( )

1

1
N

i

i

w
=

=∑ . The MIS estimator for 
( ) ( ) ( )ˆ|

ˆ|
f x Y

E g X E g X Y ≡      is 

simply 
( ) ( )( )

1

ˆ
N

i i

i

w g X
=

∑ . 

Observation: when ∞→N , MIS is the same as IS. 

Proof: 

When ∞→N , 

( )( )
( )( )

( )
( )( )

1

ˆ
1 1

ˆ

j
N

q xj
j

h X h X
E

N q X aq X=

 
→ = 

 
∑ , so 

( )( )
( )( )1

ˆ

ˆ

j
N

j
j

h X N

aq X=

→∑ . 

Therefore, the normalized importance weight in MIS and the importance weight in IS 

become identical. The consequence is that MIS is only asymptotically unbiased. 

 

Procedure: 

1. Draw 
( ){ } ( )ˆ : 1,..., ~
i

X i N q x=  and compute 
( )

( )( )
( )( )

( )( )
( )( )1

ˆ ˆ

ˆ ˆ

i j
N

i

i j
j

h X h X
w

q X q X=

≡ ∑ . 

2. ( ) ( )( )( )

1

ˆ ˆ|
N

ii

i

E g X Y w g X
=

  ≈  ∑  

 

Remarks: 

1. When N  is large, the statistical properties of the MIS estimator is similar to 

those for the IS estimator. In fact, MIS is asymptotically unbiased. 

2. MIS can be used to estimate the normalizing constant ( )Yf ˆ  in Bayesian analysis. 

Let 
( )

ˆ( )

ˆ( )

i i

i

h X

q X
α =  be the non-normalized importance weight. It can be shown that  

( )

1

1 N
i

iN
α

=

∑  is an unbiased estimator of ( )Yf ˆ . 
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Sample-importance resampling 

 

Introduction: 

Both importance sampling and modified importance sampling are mainly for 

estimating ( ) ˆ|E g X Y 
  . If we would like to obtain samples from ( )ˆ|f x Y , we can 

adopt SIR, which is just one step ahead of MIS. The idea is to resample the MIS 

samples according to their normalized weights. 

 

Procedure: Recall IIS, we have ( ){ }Niw i ,,1: L= , 
( ) 1

1

=∑
=

N

i

iw  

1. Do MIS to obtain 
( )( ){ }( )ˆ , : 1,...,
i iX w i N= . Recall that ( ) 1

1

=∑
=

N

i

iw . 

2. Resampling: Let ( ) ( )ij

new XX =  w.p. ( )iw  for Mj ,,1L= , then 

( ){ } ( )ˆ: 1, , ~ |
j

newX j M f x Y= L  

 

Remarks: 

1. There may be repeated samples in 
( ){ }: 1, ,
j

newX j M= L . 

2. M is better to be no larger than N. 

3. If N  is small, ( ){ } ( )ˆ: 1, , ~ |
j

newX j M f x Y= L . This is because MIS is only 

asymptotically unbiased. 
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 Markov Chain Monte Carlo 

1. Metropolis-Hasting algorithm 

2. Gibbs sampler 

3. Hybrid Monte Carlo 

 

Metropolis-Hasting algorithm 

 

Introduction: 

Suppose the target PDF is the posterior PDF in a Bayesian analysis: 

( )
( ) ( )

( )
( )

ˆ |
ˆ|

ˆ

f Y x f x
f x Y a h x

f Y
= = ⋅  

The idea of MH is to create a Markov chain whose stationary distribution is the same 

as the target PDF. 

 

Procedure: 

1. Let ( )(0)|cH x x  be the chosen proposal PDF. 

2. Initialize (0)X̂  = any place. 
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3. Let the candidate ( )(0)ˆ ˆ~ |C cX H x X  and compute 
( ) ( )
( ) ( )

(0)

(0) (0)

ˆ ˆ ˆ|

ˆ ˆ ˆ|

C C

C

h X H X X
r

h X H X X
= . 

4. Let 
( )

( )
(1)

(0)

ˆ min 1,.
ˆ

ˆ 1 min 1,.

C rX w p
X

rw pX


= 

−
 

5. Cycle 3→4 to obtain Markov chain samples { }( )ˆ : 0,...,tX t T= . These samples 

will be asymptotically distributed as ( )ˆ|f x Y  if the Markov chain is ergodic. 

 

First note that the MH algorithm creates a Markov chain that satisfies detailed 

balance: ( ) ( ) ( ) ( )| | ,F z x h x B x z h z x z= ∀ , ( )|F z x  and ( )|B x z  are the 

forward and backward probability transition kernels of the Markov chain. The 

forward and backward kernels in the MH algorithm are 

( ) ( ) ( ) ( ) ( )| 1 min 1, min 1, |F z x r z x r H z xδ= − − +     

( ) ( ) ( ) ( ) ( )| 1 min 1, min 1, |B BB x z r x z r H x zδ= − − +    

where ( ) ( )
( ) ( )

( ) ( )

( ) ( )

ˆ| ||

ˆ| | |

f z Y H x zh z H x z
r

h x H z x f x Y H z x
= = , ( ) ( )

( ) ( )

( ) ( )

( ) ( )

ˆ| ||

ˆ| | |
B

f x Y H z xh x H z x
r

h z H x z f z Y H x z
= = . 

( ) ( )

( ) ( )
( ) ( )

( ) ( )
( ) ( )
( ) ( )

( ) ( )

( ) ( )
( ) ( )

( ) ( ) ( ) ( ) ( ) ( )( )

( ) ( )
( ) ( )

( ) ( )
( ) ( )
( )

|

| |
1 min 1, min 1, |

| |

|
1 min 1, min | , |

|

| |
1 min 1, min

| |

LHS F z x h x

h z H x z h z H x z
z x h x H z x h x

h x H z x h x H z x

h x H z x
x z h z H z x h x h z H x z

h z H x z

h x H z x h x H z x
x z h z

h z H x z h z H x

δ

δ

δ

=

    
= − − +       
     

  
= − − +   
   

  
= − − +   
    ( )

( ) ( )

( ) ( )

,1 |

|

h z H x z
z

B x z h z RHS

 
  
 

= =

Therefore, as long as the Markov chain is ergodic, the stationary distribution will be 

unique and equal to the target ( )ˆ|f x Y . 

 

Analysis: 
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1. The MCMC estimator for ( ) ˆ|E g X Y 
   is simply ( )( )

1

1 ˆˆ
T

MCMC t

t

g g X
T =

= ∑ . The 

MCMC estimator is asymptotically unbiased because 

[ ] ( ) ( )( )

1

1 ˆ ˆ ˆˆ | |
T

t

MCMC
T

t

E g E g X Y E g X Y
T →∞

=

   = →    
∑  

Note that if we ignore the MC samples in the burn-in period, the estimator is 

unbiased. 

[ ] ( ) ( )

( )( ) ( ) ( )( )

( ) ( )

2
1 1

( ) ( ) ( )

2
1 1 1

1 1ˆ ˆ ˆ ˆˆ | |

1 ˆ ˆ ˆ ˆ ˆ| cov , |

T T
t t

MCMC

t t

T T T
t s t

t s t

Var g Var g X Y Var g X Y
T T

Var g X Y g X g X Y
T

= =

= = =

   
= =   

   

 
= + 

 

∑ ∑

∑ ∑∑
 

Note that after the MC reaches its stationary state, the time origin is forgotten, so 

( ) ( )( ) ( )( ) ( )ˆ ˆ ˆcov , |t t kg X g X Y R k+ =  

Note that ( ) ( )R k R k= −  and ( ) ( )( )ˆ0 |R Var g X Y=  

[ ] ( ) ( ) ( ) ( )( )
1

2 2
1 1 1

1 1
ˆ 0 0 2

T T T

MCMC

s t s

Var g T R R s t T R R s T s
T T

−

= = =

   
= ⋅ + − = ⋅ + −     

   
∑∑ ∑  

( ) ( ) ( )
( )

( )
[ ]

1

1

0 0
1 2 1

0

T

s

R T s R s R

T T R T
γ

−

=

  − ⋅
= + = +   ⋅   

∑  

where 
( ) ( )

( )

1

1

2
0

T

s

T s R s

T R
γ

−

=

 − ⋅
=   ⋅ 
∑  quantifies the degree of dependence of the MC 

samples. Note that 
( )0R

T
 is the variance of the estimator if the MC samples are 

all independent. However, the MC samples are dependent so the actual variance is 

larger than 
( )0R

T
 for a factor of [ ]1 γ+ . One can say that the equivalent number 

of independent samples is 
1

T

γ+
. Note that ( )R k  can be estimated from the MC 

samples as the following: 

( ) ( ) ( )( )

( ) ( )( ) ( )

( ) ( )

( ) ( )

1

cov ,

1 ˆ ˆ ˆˆ ˆ

t t k

T k
t t k

MCMC MCMC

t

R k g X g X

g X g g X g R k
T k

+

−
+

=

=

   ≈ − ⋅ − ≡
   −

∑
 

2. Confidence interval 

Note that the Central Limit Theorem and the Law of Large Number still hold for 
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weakly dependent samples, i.e. 

( ) ( )
( )( )

[ ]( )

1

ˆ|1 ˆ ˆˆ | , 1
T

t

MCMC T
t

Var g X Y
g g X N E g X Y

T T
γ

→∞
=

 
  = → +  
 

∑  

So the following 95.4% confidence interval can be built: 

[ ] ( ) [ ]
ˆ ˆ(0) (0)ˆˆ ˆˆ ˆ2 1 | 2 1MCMC MCMCR R

g E g X Y g
T T

γ γ − + ≤ ≤ + +   

 

Remarks: 

1. Recall that ( ) ( )ˆ|f x Y a h x= ⋅ . We don’t need to know how to evaluate the 

normalizing constant a  since it is cancelled out as we compute r. 

2. When the initial state of the Markov chain is chosen arbitrarily, the chain may 

need some time to reach its stationary state. We call this period the burn-in period. 

The MC samples in the burn-in period are not distributed as ( )ˆ|f x Y . We can 

choose to discard these samples. The usual way of identifying the burn-in period 

is to plot the sample value time history (or the time history of certain chosen 

statistics) and identify it visually. 

 

3. How do we know the resulting MC is ergodic? In many cases, we don’t know it 

for sure. But if we conduct several MCMCs to obtain independent MCs and found 

their behavior is similar, we can argue that the MC may be ergodic. There are 

cases where we can immediately see the MC is ergodic or not: 

 
4. After reaching the stationary state, the MC samples become identically distributed 

but dependent. The dependency between two samples decays with the time 

( )xf ( )xf

( )xyH ,

( )xyH ,

Burn-in period 

tX̂

t

Samples in the burn-in period 

can be discarded 
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difference. 

5. When ( ) ( )| |H z x H x z= , the resulting algorithm is called the Metropolis 

algorithm. Note 
( )
( )(0)

ˆ

ˆ

Ch X
r

h X
= . 

 

 

 

 

 

6. The choice of the proposal PDF ( )|H z x  can significantly affect the efficiency 

of MCMC. From our experience, the type of ( )|H z x  is not critical but the 

width of ( )|H z x  matters. If ( )|H z x  is very narrow, 1≈r  and no rejection, 

but adjacent samples are highly correlated. If ( )|H z x  is very wide, r  is often 

small and lots of rejection and repeating samples, so the samples can be highly 

correlated. Therefore, ( )|H z x  should not be too narrow or too wide. The rule of 

thumb is to take the width of ( )|H z x  to be the same order of the width of 

( )ˆ|f x Y . Usually, the performance is the best when the rejection rate is around 

50%. 

7. In principle, the MH algorithm should work even when the X  dimension is high. 

In practice, an efficient proposal PDF can be difficult to build because we usually 

lack of knowledge of the geometry of the target PDF ( )ˆ|f x Y . There are also 

issues for the local-random-walk MH, e.g. MH with a Gaussian proposal PDF. 

Consider the following Gaussian PDF. Let σmax
2
 and σmin

2
 be the maximum and 

minimum eigenvalues of the covariance matrix. Suppose we choose a Gaussian 

proposal PDF ( )|H z x  whose standard deviation in all directions is identical 

and equal to σmin. One can see that in order to have the MC samples travel 

throughout the significant region of the target PDF, we need at least σmax/σmin MC 

( )h x

( )ˆ Ch X

( )0ˆh X

always accept 

0
ˆ( )h X

ˆ( )Ch X

accept with prob r 
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time steps.  

This difficulty is due to high asperity ratio may occur regardless the dimension of 

X. However, from my experience, it occurs more frequently when X  dimension 

is high. This is definitely not an issue when X is a scalar. 

 

8. MH may not work for multi-modal PDFs since the resulting MC may be 

non-ergodic. 
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Gibbs sampler 

 

Introduction: 

Is it possible to conduct MCMC without rejecting samples? It turns out to be possible. 

This can happen when the uncertain variable X  can be divided into m groups 

{ }: 1,...,iX i m=  and, moreover, when it is feasible to directly sample from 

{ }( )ˆ| \ ,i if x x x Y  i∀ , where { }\ ix x  denotes { }1 1 1,..., , ,...,i i mx x x x− + . 

 

Procedure: 

1. Initialize 
( ) ( ) ( )0 0 0

0 1 2
ˆ ˆ ˆ ˆ, , , mX X X X =  L  at any place. 

2. Sample 
( )

( ) ( ) ( )( )
( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( )( )

1 0 0

1 1 2

1 1 0 0

2 2 1 3

1
1 1 1 0 0

3 3 1 2 4

1 1 1

1 1

ˆ ˆ~ | , , ,

ˆ ˆ~ | , , , ,

ˆ ˆ ˆ~ | , , , , ,

ˆ ˆ~ | , , ,

m

m

m

m m m

X f x x x Y

X f x x x x Y

X X f x x x x x Y

X f x x x Y−







= 






L

L

L

M

L

 

3. Repeat step 2 to get 
( ){ }ˆ : 0, ,
t

X t T= L . These samples will be asymptotically 

distributed as ( )ˆ|f x Y  if the Markov chain is ergodic. 

Note that the Gibbs sampler algorithm creates a Markov chain that satisfies detailed 

balance: ( ) ( ) ( ) ( )ˆ ˆ| | | | ,F z x f x Y B x z f z Y x z= ∀ , ( )|F z x  and ( )|B x z  are 

the forward and backward probability transition kernels of the Markov chain. Using 

the following transition as an example: 

( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

1 1

1 1

1 1

2 2

1

3 3

4 4

t t

t t

t t

t t

t t

m m

x z

x x

x x

x x

x x

x x

+ +

+ +

+

   
   
   
   
   → → →
   
   
   
   
   
   

L L

M M

 

The forward and backward kernels in the Gibbs sampler algorithm are: 
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( ) ( ) ( ) ( ) ( ) ( )1 1 2 2 4 4 3 1 2 4
ˆ| | , , , , ,m m mF z x z x z x z x z x f z x x x x Yδ δ δ δ= − − − − ⋅L L  

( ) ( ) ( ) ( ) ( ) ( )1 1 2 2 4 4 3 1 2 4
ˆ| | , , , , ,m m mB x z x z x z x z x z f x z z z z Yδ δ δ δ= − − − − ⋅L L

( ) ( )

( ) ( )
( )

( )

( ) ( )
( )

( )

( ) ( )
( )

( )

33 3

33 3

3 3

3

1 1 3 1 1

1 1 3 1 1 2 3 4

1

1 1 1

1

ˆ| |

ˆ ˆ| , , , , , |

ˆ ˆ| , , , , , , , |

ˆ, , |
,

ˆ, , |

m m m m

No xNo z x

m m m m

No zNo x z

m

m m

No x z

m

No z

F z x f x Y

z x z x f z x x Y f x x Y

x z x z f z z z Y f z z x z z Y

f z z Y
x z x z f z

f z z Y

δ

δ

δ

δ δ

δ δ

δ δ

−

−

−

 
= − − ⋅   

 

 
= − − ⋅ ⋅  

 

= − − ⋅ ⋅
 
  
 

L L L

L L L

L
L

L

( )

( ) ( )
( )

( )
( )

( ) ( )
( )

( ) ( ) ( )

3 3

3

33 3

2 3 4

1 2 3 4

1 1 1

1

1 1 3 1 1

ˆ, , , |

ˆ, , , , |
ˆ, , |

ˆ, , |

ˆ ˆ ˆ| , , , , , | | |

m

m

m m m

No x z

m

No z

m m m m

No zNo x z

z x z z Y

f z z x z z Y
x z x z f z z Y

f z z Y

x z x z f x z z Y f z z Y B x z f z Y

δ

δ

δ δ

δ δ

−

−

= − − ⋅ ⋅
 
  
 

 
= − − ⋅ ⋅ =  

 

L

L
L L

L

L L L
 

 

Remarks: 

1. Unlike MH, Gibbs sampler needs no proposal PDF, so no rejection. But the 

tradeoff is that we need to know how to sample from ( )ii xxxf \| . 

2. In the case that we don’t know how to directly sample from ( )ii xxxf \| , we can 

sample it using sample-importance resampling, MCMC, rejection sampling, etc. A 

popular choice is to use adaptive rejection sampling to sample from ( )ii xxxf \|  

[3]. 

3. The advantages and disadvantages of Gibbs sampler are similar to those for MH. 

The analysis is also the same. 

4. Gibbs sampler will not work well when some uncertain parameters are highly 

correlated conditioning on the data. The consequence is that the MC samples 

move very slowly when sample these highly correlated variables. There are 

variants of Gibbs sampler that enjoy larger jumps in the MC samples even when 

such high correlation exists, e.g. Gibbs sampler with overrelaxation [4,5]. 

 

Hybrid Monte Carlo 
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Introduction: 

Both MH and Gibbs sampler create MCs with local random walk behavior. However, 

this behavior is not desirable. With this behavior, it may take a long time to have the 

resulting MC travel throughout the significant region of ( )ˆ|f x Y , especially when 

X  dimension is high. Hybrid Monte Carlo is a MCMC algorithm that does not use 

local random walk. 

The basic idea is to add an auxiliary uncertain variable Z  to the process, where the 

new target PDF is proportional to 

( ) ( )
2

1

1

2
,

n

i

i

z

f x z h x e =

− ∑
∝ ⋅  

where ( )ˆ| ( )f x Y a h x= ⋅  and n is the dimension of X . If we are able to sample 

from ( ),f x z , it is clear that the X  part of the samples will be distributed as 

( )ˆ|f x Y . How do we sample from ( ),f x z ? We employ MCMC. 

The main trick for Hybrid Monte Carlo is to give ( )h x  and z  some physical 

meaning: [ ]log ( )h x−  is considered to be the potential energy of a ball with unit 

mass (x is the location of the ball; think of [ ]log ( )h x−  to be the profile of a valley) 

and z is the velocity of the ball. So the total energy of the ball is 

( ) ( )2

1

1
log log ( , ) ,

2

n

i

i

h x z f x z H x z
=

− + = − ≡∑  

If there is no friction when the ball rolls on the valley, the total energy ( ),H x z  is 

conservative, i.e. ( , )f x z  is conservative, and the ball rolls according to the 

following equations: 

( ) ( ), log
1,...,i i

i

i i

H x z h xdx dz
z i n

dt dt x x

∂ ∂
= = − = =

∂ ∂
 

 

Procedure: 

1. Initialize (0)X̂ , (0)Ẑ  

2. Solve ( )x t , ( )z t  according to the following governing equation 

( ) ( ), log
1,...,i i

i

i i

H x z h xdx dz
z i n

dt dt x x

∂ ∂
= = − = =

∂ ∂
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with initial condition (0)ˆ(0)x X=  and (0)ˆ(0)z Z= . Evolve the solution for 

randomized duration of (0)R̂ . Let ( )(1) (0)ˆ ˆX x R= . 

3. Resample 
2

1

1

(1) 2ˆ ~

n

i
i

z

Z e =

− ∑

 

4. Cycle 2-3 to get { }( )ˆ : 0,...,tX t T= . These samples will be asymptotically 

distributed as ( )ˆ|f x Y  if the Markov chain is ergodic. 

 

Analysis: same as MH 

 

Remarks: 

1. The HMC algorithm indeed samples from ( ),f x z . To see this, let’s view the end 

product of Step 2 in the algorithm as a candidate, i.e. ( ) ( )(0) (0)ˆ ˆ ˆ ˆ,C CX x R Z z R= =  

is the candidate of the MCMC algorithm. One can verify that 

( )
( )(0) (0)

ˆ ˆ,
1

ˆ ˆ,

C Cf X Z
r

f X Z
= =  

This is because the total energy ( ),H x z , and hence ( , )f x z , remains constant in 

the solution process of the Hamiltonian equations. Therefore, the candidate 

ˆ ˆ,C CX Z  is always accepted as the next MC sample. 

2. The duration (0)R̂  in Step2 is better to be randomized to avoid a periodic MC, 

although the chance of being so is very small. 

3. Step 3 is necessary since without it, ( , )f x z  will be always constant, hence the 

MC will not explore the entire phase space. 

4. In practice, Step 2 cannot be solved analytically and must be solved 

approximately. Doing so, the resulting r ratio will be only approximately equal to 

1. To handle this issue, we can simply add an accept/reject step, i.e. change Step 2 

to the following: 

Solve ( )x t , ( )z t  approximately according to the following governing equation 
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( ) ( ), log
1,...,i i

i

i i

H x z h xdx dz
z i n

dt dt x x

∂ ∂
= = − = =

∂ ∂
 

with initial condition (0)ˆ(0)x X=  and (0)ˆ(0)z Z= . Evolve the solution for 

randomized duration of (0)R̂ . Let ( )(0)ˆ ˆCX x R=  and ( )(0)ˆ ˆCZ z R= . Accept the 

candidate, i.e. take (1)ˆ ˆ CX X= , with probability r, where 

( )
( )(0) (0)

ˆ ˆ,

ˆ ˆ,

C Cf X Z
r

f X Z
=  

If not accepted, repeat the previous sample, i.e. take (1) (0)ˆ ˆX X= . 

The approximate solution algorithm to the Hamiltonian equations can not be 

arbitrary. In fact, the chosen algorithm must be reversible in time, i.e. if starting 

from initial condition, we obtain the candidate solution; a reversible algorithm 

must have the property that starting from that candidate and solve the equation 

backward in time, we will obtain the same initial condition. This is so because the 

resulting HMC algorithm must satisfy the so called detailed balance (or 

reversibility) condition. The following “leapfrog” (finite difference) algorithm is 

reversible and is accurate to the 2
nd
 order in the Taylor series expansion: 

( )
( )

( )

( )( )

( ) ( )

( )
( )

( )

( )( )

2 2

2

2 2

i x x t

i i

i i i

i x x t t

i i

h x xt t
z t z t

h x t

t
x t t x t t z t

h x xt t
z t t z t

h x t t

=

= +∆

∂ ∂∆ ∆ 
+ = + 

 

∆ 
+ ∆ = + ∆ ⋅ + 

 

∂ ∂∆ ∆ 
+ ∆ = + + 

+ ∆ 

 

5. One can see that HMC does not do local random walk and it’s possible for HMC 

to make large jumps. Of course the tradeoff is that HMC requires solving the 

Hamiltonian equations, which may requires much computation. According to the 

experience from other researchers, it seems that the cost is usually worthwhile, 

compared to MH and Gibbs sampler. 
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